高校物理」カテゴリーアーカイブ

【高校生・高専生用】単振動の考え方 (1)


単振動は難しいと感じたことはないだろうか。当時高校生の頃は単振動がまったくよく分からず、どうして周期は\( T = \frac{2 \pi}{\omega} \)になるのか。角振動数\( \omega \)って何なんだ…。など、テストで出たらお終いのようなレベルの理解度であった。私がそもそも勤勉家でないのも災いしているが(周りの人でできる人は少なからず居ましたからね)、その単振動に対する疑問が完全に氷解したのが浪人生の頃。この記事では、単振動に関する話をいくつか細切れにし、私がつまずきの段階から完全な理解に達したプロセスのようなものを伝えられたらと思う。

そもそも単振動とは何か

単振動は、ある物体の運動方程式が以下の形式で表される運動の総称である。

\begin{eqnarray}
m \frac{d^{2} x}{dt^{2}} = \ – k x
\end{eqnarray}

ここで\( m \)は物体の質量(正の定数)、\( \frac{d^{2}x}{dt^{2}} \)は物体の加速度、\( k \)はばね定数(正の定数)、\( x \)は物体の位置( \( x \) 座標)を表している。この方程式(正確には微分方程式)で表される運動は、\( m \)や \( k \)がたとえどんな値であろうが単振動という運動に分類される。

運動を調べるとは運動方程式を解くこと

さて、単振動の運動方程式は\( m \frac{d^{2} x}{dt^{2}} = \ – k x \)なのだが、この運動を実際に調べるには運動方程式を解かねばならない。そこが少し複雑なため、高校生や高専生の1, 2年生には扱いにくいのである。ここで紹介するのはその複雑な方なのだが、プロセスは複雑そうに見えても、これらの記事を乗り越えられれば単振動に対する見え方は明快になるであろう。

実際に運動方程式を解いてみる

ここでは数学の微分の知識が必要だ。微分がわからない人は(こちらの記事:後投稿)をまず参照して何となく理解してもらったらまたこちらに戻ると良い。このとき、必ず紙と鉛筆を持ってこの記事と共に一緒に計算を進めること。物理学は自分の頭で考え、計算を実際に手を動かしながら納得して行く学問である。ただ眺めて考えるのはやめにしよう。

\begin{eqnarray}
m \frac{d^{2} x}{dt^{2}} = \ – k x
\end{eqnarray}

を変形すると、

\begin{eqnarray}
\frac{d^{2} x}{dt^{2}} = \ – \omega^{2} x
\end{eqnarray}

とまとめることができる。ここで、

\begin{eqnarray}
\omega = \sqrt{ \frac{k}{m} }
\end{eqnarray}

と定義した。これをなぜ?と思う人も居られると思うが、後で説明が楽になるための方便に過ぎない。ひとまず騙されたと思って計算していこう。この方程式を言葉に直すと、

「物体の位置( \(x\)座標)を二回繰り返して\(t\)について微分すると、自身\(x\)にさらに(\( – \omega^{2}\))をかけたものが出てくる」

ということだ。不思議なものだ。ある量を2回も微分していると言うのに、また自分自身に似たようなものが出てくると言うのだから。実は、このような量(関数)は、高校生では3年生に扱う三角関数の微分を理解していれば直感的に分かる。数学定理:

\begin{equation}
\left\{
\begin{aligned}
\frac{d}{dt} & \sin{t} = \cos{t} \\
\frac{d}{dt} & \cos{t} = -\sin{t}
\end{aligned}
\right.
\end{equation}

から、

\begin{eqnarray}
\frac{d^{2}}{dt^{2}} \sin{t} & = & \frac{d}{dt} \Bigl( \frac{d}{dt} \sin{t} \Bigr) \\
& = & \ – \sin{t}
\end{eqnarray}

となる。おや?これは何だか…

$$\frac{d^{2} x}{dt^{2}} = \ – \omega^{2} x$$

の形に似ていないだろうか。この式で\( \ x(t) = \sin{t} \)とし、\( \omega^{2} = 1 \)とおいた式そのままだ。ここで次の数学公式(合成関数の微分法:後投稿)を使い、また一工夫してみる。

\begin{equation}
\left\{
\begin{aligned}
\frac{d}{dt} \sin{\omega t} & = \omega    \cos{\omega t} \\
\frac{d}{dt} \cos{\omega t} & = \ – \omega \sin{\omega t}
\end{aligned}
\right.
\end{equation}

であるから、

\begin{eqnarray}
\frac{d^{2}}{dt^{2}} \sin{\omega t} & = & \frac{d}{dt} \Bigl( \frac{d}{dt} \sin{t} \Bigr) \\
& = & \frac{d}{dt} \Bigl( \omega \cos{\omega t} \Bigr) \\
& = & – \omega^{2} \sin{\omega t}
\end{eqnarray}

と計算できる。なんとこれは、

$$\frac{d^{2} x}{dt^{2}} = \ – \omega^{2} x$$

の形そのものだ。従って、この\( x(t) = \sin{\omega t} \)というものが求める答えになる気がする。これは正しいともいえるが、正確には「答えの一つ」である。なぜなら、例えば\( \ x(t) = 2 \sin{(\omega t + 1)}\)というものも、

\begin{eqnarray}
\frac{d^{2}}{dt^{2}} x(t) & = & \frac{d^{2}}{dt^{2}} \Bigl( 2\sin{(\omega t + 1 )} \Bigr) \\
& = & \frac{d}{dt} \Biggl( \frac{d}{dt} \Bigl( 2\sin{ (\omega t + 1)} \Bigr) \Biggr) \\
& = & \frac{d}{dt} \Bigl( 2\omega \cos{(\omega t + 1)} \Bigr) \\
& = & \ – 2\omega^{2} \sin{(\omega t + 1)} \\
& = & \ – \omega^{2} \Bigl( 2\sin{(\omega t + 1)} \Bigr) \\
& = & \ – \omega^{2} x(t)
\end{eqnarray}

となり、同様に単振動の方程式の位置\( x(t) \)を表すものとして適切だからである。実際、\( x(t) = A \sin{(\omega t + B)} \) の形で書かれているものは(\(A, B \)は時間に依存しない任意の定数)、\( \frac{d^{2} x}{dt^{2}} = \ – \omega^{2} x \)を満たす(気になる人は上の式に\( x(t)=A \sin{(\omega t +B)} \)を代入してみよ)。これは一般解と呼ばれ、あらゆる単振動の運動を表現している。具体的に定数\( A, B \)を決めることで、単振動の中でもどのような単振動なのか(振幅が大きいだとか、初めは静止状態からスタートしたとか)が決められる。

従って、我々は、

$$\frac{d^{2} x}{dt^{2}} = \ – \omega^{2} x$$

の形の方程式を見たら、その解は一般的に、

$$ x(t) = A \sin{(\omega t + B)}$$

という形で表現されると思って良い。

単振動の一般解の表現の違い

これは補足であるが、上で求めた一般解、

$$ x(t) = A \sin{(\omega t + B)}$$

以外にも、

$$ x(t) = A’ \cos{(\omega t + B’)}$$

$$ x(t) = A” \sin{\omega t} + B” \cos{\omega t}$$

も一般解になることが証明できる。どれを使えば良いのかは、次の記事で具体的な例を交えながら紹介していきたいと思う。